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Abstract

We study the problem of dissolving a partnership when the objective is to minimize maximum

regret. Focusing on the two-agent equal-entitlement case, we examine the family of linear-

pricing mechanisms and derive regret-optimizing strategies. Next, we analyze a binary-search

mechanism which is ex-post individually rational. We discuss connections with the standard

Bayesian-Nash framework for both linear and binary-search mechanisms. On a more general

level, we show that ex-post efficiency and ex-post individual rationality impose significant

restrictions on permissable mechanisms. Nevertheless, truth-inducing mechanisms satisfying

these properties exist in the equal-entitlement case.

1 Introduction

1.1 Motivation and Related Work

Many partnership agreements include buy-sell clauses that stipulate that a partnership may be

dissolved if one partner (the proposer) offers to buy out the other partner (the responder) at some

proposed price for each share. While the responder may accept this offer, she may also turn this

offer around and buy out the proposer at the same price [7, 3, 13].

We propose a class of symmetric procedures, whereby the partners make simultaneous offers;

the partner who makes the higher offer becomes the buyer and the other partner the seller, where

the price is some intermediate value. If the two partners have equal entitlements (i.e., 50 percent

each), this procedure satisfies several desirable properties. For example, under specified conditions

for determining the price, an optimal strategy of the partners is to be truthful in order to minimize
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their maximum regret, a goal likely to be appealing to risk-averse partners. It also relieves the

proposer in standard buy-sell from having to make herself indifferent between being the buyer or

being the seller–like the cutter in ”I cut, you choose”–and is efficient in awarding the partnership

to the partner that values it more when the partners are truthful.

To set the stage for our analysis, consider a group of agents that jointly owns an indivisible

good. Each agent is entitled to a fraction of the good, and the fractions sum to 1. Each agent

attaches some value to obtaining sole ownership of the good. Our objective is to design procedures

for allocating the good to one agent and compensating the other agents for not obtaining it. While

this general class of problems—commonly referred to as partnership-dissolution problems—has

been extensively studied in the literature, all of the existing work assumes that agent valuations

are independently drawn from distributions that are common knowledge.

The distinguishing feature of this paper is its focus on minimizing maximum regret, which

is defined as the worst-case difference between the actual profit achieved by an agent and her

optimal profit assuming complete information. An important advantage of this approach is its

substantial weakening of the common-prior assumption. Specifically, it suffices to assume that

agent valuations are drawn from an interval whose endpoints are common knowledge. The model

we study is insensitive to the particular manner in which agent valuations are drawn simply be-

cause if focuses on the worst case. In contrast, the traditional model is sensitive to the distribution

of valuations, because it seeks to optimize expected profit.

Partnership-dissolution problems have a rich history in the economic-theory literature. Typ-

ically, the problem is modeled as a bargaining game in which players maximize expected profit

in a Bayesian-Nash framework. The key properties explored are ex-post efficiency, individual ra-

tionality, and incentive compatibility. A brief description of these concepts is warranted: Ex-post

efficiency is satisfied if and only if the agent with the highest valuation receives the good; interim

individual rationality is satisfied if the mechanism affords positive expected profit to all agents at

the interim stage (i.e., after each agent learns her valuation), regardless of the agents’ valuations.

Finally, a mechanism is said to be incentive-compatible if it induces agents to be truthful in their

equilibrium bidding for the resource.

Chatterjee and Samuelson [4] consider an important special case of the partnership dissolution

problem in which there are two agents, one of whom (the seller) owns the entire good. They assume

that agents’ valuations for the good are independently distributed random variables and analyze

linear-pricing mechanisms, wherein the price of the good is a convex combination of the players’

two bids. In this context, they derive a necessary and sufficient condition for equilibrium bidding

strategies. An explicit solution is given for the case of symmetric uniform [0,1] valuations and a
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split-the-difference price—that is, when the price is set to be the mean of the two bids, provided

the seller bids less than the buyer. They show that the seller has an incentive to overstate her

true valuation when it is below 3/4, whereas the buyer has an incentive to understate her true

valuation when it is above 1/4; they also show that under certain conditions, mutually beneficial

trade will not occur in equilibrium, rendering the mechanism inefficient.

Myerson and Satterthwaite [10] generalize this two agent buyer-seller framework. In contrast

to [4], they do not restrict their analysis to linear-pricing mechanisms. They provide a character-

ization of all incentive-compatible and interim individually rational mechanisms, showing these

two properties to be incompatible with ex-post efficiency. Their result delineates the limitations

inherent in dissolving a partnership in a satisfactory manner.

Perhaps most relevant to our work is the important generalization of the Myerson-Satterthwaite

result due to Cramton, Gibbons and Klemperer [5]. They consider a model with n agents, each

owning a share ri of the good, where
∑n

i=1 ri = 1.1 They depart from the standard model by

allowing for a redistribution of the partnership ownership shares and not limiting their attention

to its dissolution (wherein one agent is assumed to take sole possession of the good). In this con-

text, they characterize the set of all incentive-compatible and individually rational mechanisms.

Furthermore, they provide a simple necessary and sufficient condition for such mechanisms to be

ex-post efficient. Essentially, such a dissolution is possible if and only if initial endowments are

sufficiently close to the equal-endowment vector; it is never possible for extreme cases of ownership

asymmetry, such as in the buyer-seller framework.

McAfee [8] examines simple mechanisms for dissolving equal-share two-agent partnerships

with an arbitrary degree of risk aversion and derives equilibrium strategies for the mechanisms

considered. His model allows for an “outside option,” which can be exercised only if both parties

agree to it. One of these mechanisms (winner’s bid auction), whereby the agent with the highest

bid pays the loser one half of her bid, is ex-post efficient.

1.2 Our Focus

A key element in the partnership-dissolution problem is that an agent does not know exactly the

bids of the other agents. If an agent (somehow) obtains this information, her strategy is very

simple to calculate. We evaluate the efficacy of any given strategy by comparing it to the agent’s

optimal strategy in hindsight (presuming she has complete information about the bids of the other

agents). The smaller this difference, the better her strategy, because she is closer to her optimum.

1To recover the Myerson and Satterthwaite model [10], set n = 2, r1 = 1, and r2 = 0.
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Of course, this difference is sensitive to the particular values (and hence bids) of the other

agents. We therefore focus on the worst difference, where “worst” is defined with respect to the

valuations of all of the other agents. The difference between an agent’s actual profit and her

optimal profit is her regret.

We focus on finding a strategy whose maximum regret is minimized. This approach has its

roots in traditional decision theory [12] and is standard in the analysis of online algorithms in

computer science [2] (although there the focus is on relative regret as opposed to absolute regret).

Important recent applications of this idea appear in robust newsvendor models [11] and robust

monopoly pricing [1, 6].

Organization of the Paper. The structure of the paper is as follows. In Section 2 we for-

mally define the model and our concept of regret. In Section 3 we focus on the family of linear

mechanisms and derive regret-optimizing strategies for the two-agent model. In Section 4 we

discuss a special binary search mechanism that is applicable to the two-agent equal-endowments

model. We prove that the mechanism induces a truthful regret-optimizing truthful equilibrium. If

agents’ valuations are drawn from independent uniform [0,1] distributions, then the binary search

mechanism induces a truthful Bayesian-Nash equilibrium as well. In Section 5 we show that

ex-post efficiency and ex-post individual rationality impose significant restrictions on permissable

mechanisms, but there exist truth-inducing mechanisms in the equal-entitlement case.

2 Model Description

2.1 Two Agents

The model has two agents, denoted 1 and 2. Each agent i owns a share ri, i = 1, 2, of the

partnership, where ri ∈ [0, 1] and r1 + r2 = 1. Each values the partnership at vi, which is private

information but is known to be in the interval [0, 1]. We emphasize that no additional assumptions

are made about the valuations. In particular, we do not assume that they come from distributions

that are common knowledge, which is a restrictive assumption made in the standard approach.

The main focus of the paper is on direct mechanisms in which players simultaneously submit

sealed bids b1 and b2 for the partnership. A mechanism p is a function which takes as input the

bids of the agents and determines who gets the partnership (or good), and at what price. We

restrict ourselves to mechanisms in which the good is always awarded to the agent submitting the

higher bid, at a price p(b1, b2), which is also the amount of money transferred to the low bidder
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(thus, the mechanism is budget-balanced). Even within this class, we focus on mechanisms that

satisfy two additional properties:

(a) Convexity: The price p(b1, b2) is at most the high bid and at least the low bid; and

(b) Anonymity: The price p(b1, b2) does not depend on the identity of the bidders, i.e.,

p(b, b′) = p(b′, b).

We assume that the agents have linear utilities, so that an agent with valuation v and owning

a share r of the partnership has a utility of rv. Suppose b1 > b2 so that agent 1 is awarded the

partnership. The utilities of agents 1 and 2 after the dissolution are given by v1 − r2p(b1, b2) and

r2p(b1, b2), respectively, whereas their initial utilities are, respectively, r1v1 and r2v2. The profit

of agent 1 is therefore

v1 − r2p(b1, b2) − r1v1 = r2(v1 − p(b1, b2)).

Similarly, agent 2’s profit is given by

r2p(b1, b2) − r2v2 = r2(p(b1, b2) − v2).

2.2 Regret

The distinguishing feature of our approach is the performance measure used to evaluate a bid-

ding strategy. This measure is standard in computer science [2], and is increasingly used in

economics [1] and operations research [11].

Define the regret of an agent to be the difference between her optimal profit and her actual

profit, where the optimal profit is calculated by assuming that the agent knows the other agent’s

bid. That is, an agent’s optimal profit is the best that she could have done in hindsight. This is

especially easy to calculate in the case of two agents: Suppose agent i’s valuation is v, and the

other agent’s bid is b̂. Then it is optimal for agent i to bid slightly above b̂ to win the good if

b̂ < v; and it is optimal for agent i to bid slightly below b̂ to sell her share of the partnership if

b̂ > v. Note that in the first case, agent i gets the good at the lowest possible price, and in the

second case, agent i sells the good at the highest possible price. In both cases, i’s optimal bid is

the bid of the other agent, slightly perturbed upwards or downwards.

The measure that we use to evaluate a bidding strategy is the worst-case regret, where the

worst case is over all possible bids of the other agent. In other words, we hypothesize that each

agent acts as if to minimize her maximum regret. The information in Table 1 is useful in finding

a bidding strategy that minimizes the maximum regret.
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Focusing on player 1, we suppose she has a valuation of v1 and bids b1, while we denote her

opponent’s bid by b̂. The columns Actual and Optimal refer to an agent’s actual and optimal

profits, respectively. An agent’s regret is taken to equal the difference between her optimal and

actual profits. We then enumerate four cases that give rise to different actual and optimal profits,

and therefore regret. For example, the third row of the table describes the situation in which

agent 1 wins the good with a bid of b1, and the optimal strategy (in hindsight) is for agent 1 to

lose the auction with a bid that is slightly less than her opponent’s. In each case we now take b̂ so

Cases Actual Optimal Regret

b1 > b̂, b̂ ≤ v1 r2(v1 − p(b1, b̂)) r2(v1 − p(b̂, b̂)) r2(p(b1, b̂) − b̂)

b1 ≤ b̂, b̂ > v1 r1(p(b1, b̂) − v1) r1(p(b̂, b̂) − v1) r1(b̂ − p(b1, b̂))

b1 > b̂, b̂ > v1 r2(v1 − p(b1, b̂)) r1(p(b̂, b̂) − v1) r1b̂ + r2p(b1, b̂) − v1

b1 ≤ b̂, b̂ ≤ v1 r2(p(b1, b̂) − v1) r1(v1 − p(b̂, b̂)) v1 − r1b̂ − r2p(b1, b̂)

Table 1: Actual and Optimal Profits: Case Analysis

as to maximize regret—this is the worst possible regret of agent 1, assuming she knows nothing

at all about agent 2’s valuation or bid (except for the range of agent 2’s valuation). We arrive

at the following expression for maximum regret, as a function of agent 1’s valuation and bid. An

equivalent expression holds for agent 2.

R1(b1) = max



























r2 max{p(b1, b̂) − b̂}, b̂ ≤ min{b1, v1}

r1 max{b̂ − p(b1, b̂)}, b̂ ≥ max{b1, v1}

b1 − v1, b1 > v1

v1 − b1, b1 ≤ v1

Thus, given a mechanism p, both agents wish to compute bidding strategies, b1 and b2, which, in

equilibrium, minimize the functions R1(b1) and R2(b2), respectively.

2.3 Properties of Mechanisms

Armed with the particular way in which bidding strategies are evaluated, we now state properties

that we would like a mechanism to satisfy. These properties have analogs in the standard Bayesian-

Nash setting that we will also investigate.

Efficiency. A mechanism p is said to be ex-post efficient if there are equilibrium (regret-

optimizing) strategies in which it always awards the good to the agent with the highest valu-

6



ation. In other words, if b1(·), b2(·) are equilibrium (regret-optimizing) strategies induced by the

mechanism p, ex-post efficiency implies:

v1 ≤ v2 ⇔ b1(v1) ≤ b2(v2) ∀v1, v2.

Individual Rationality. A mechanism p is said to be ex-post individually rational if it guar-

antees a non-negative payoff under any realization of the valuations. Specifically, if b1(·), b2(·)

are the equilibrium regret-optimizing strategies induced by the mechanism p, ex-post individual

rationality implies for i = 1, 2 and j 6= i:

vi − p(bi(vi), bj(vj)) ≥ 0, ∀{(vi, vj) : bi(vi) ≥ bj(vj)},

p(bi(vi), bj(vj)) − vi ≥ 0, ∀{(vi, vj) : bi(vi) ≤ bj(vj)}.

Truthfulness. A mechanism p is said to be truthful if it admits a regret-optimizing equilibrium

in which agents bid truthfully. Truthful bidding for an agent i is taken to mean bi(vi) = vi.

The following proposition shows that ex-post individual rationality and truthfulness are equiva-

lent.

Proposition 1 A mechanism is ex-post individually rational if and only if it is truthful.

Proof. That truthfulness in conjunction with convexity implies ex-post individual rationality

is obvious. To show the converse, assume that the mechanism p is ex-post individually rational

and that agent 1 observes a valuation of v1. Then for b1(·) and b2(·) to be equilibrium strategies

induced by p, we must have:

p(b1(v1), b2(v2)) ≤ v1, ∀v2 : b2(v2) ≤ b1(v1),

p(b1(v1), b2(v2)) ≥ v1, ∀v2 : b2(v2) ≥ b1(v1).

Hence, p(b1(v1), b1(v1)) = v1. On the other hand, convexity implies p(b1(v1), b1(v1)) = b1(v1).

Putting the two equalities together, we conclude that b1(v1) = v1.

Because truthfulness implies ex-post efficiency, we have the following:

Proposition 2 If a mechanism p is ex-post individually rational, it is ex-post efficient.
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3 Linear Mechanisms

In this section we focus on a natural class of mechanisms in which the price is set to be a convex

combination of the bids. If the agents bid b1 and b2, respectively, the partnership is sold to the

highest bidder at the price p = λmin{b1, b2}+ (1−λ)max{b1, b2} for λ ∈ [0, 1]. (Note that p is λ

times the low bid plus (1− λ) times the high bid.) If λ = 1/2, the two agents split the difference,

yielding the canonical mechanism in this class.

3.1 Linear Mechanisms and Regret

The main result in this section is the derivation of regret-optimizing strategies for two agents.

That this analysis extends to the case of more than two agents is straightforward.2 We focus on

the equal-endowment profile and compare different linear mechanisms in terms of their min-max

regret. Our analysis shows that there is no dominance relation between any two mechanisms

within this class.

Theorem 1 Fix a linear mechanism λ and r1, r2. The regret-optimizing bidding strategy for agent

i is given by:

bi(vi) =























vi

1+λri
+ λri

1+ri
0 ≤ vi ≤ li

λri
1+λri
1+ri

+(1−λ)rj

λrj

1+rj

λri+(1−λ)rj
li ≤ vi ≤ ui

vi

1+(1−λ)rj
+

(1−λ)rj

λrj

1+rj

1+(1−λ)rj
ui ≤ vi ≤ 1

where li and ui are such that bi(vi) is continuous.

Proof. Let b1(·) be the bidding strategy of agent 1. Upon learning her valuation to be v1, she

places a bid of b1(v1). Suppose also that agent 2’s bids are in the interval [c2, d2] for 0 ≤ c2 ≤

d2 ≤ 1. As we showed in Section 2, the function that agent 1 wishes to minimize is the following.

R1(b1) = max



























r1λ(d2 − b1), d2 ≥ max{v1, b1}

r2(1 − λ)(b1 − c2), c2 ≤ min{v1, b1}

b1 − v1, b1 > v1

v1 − b1, b1 ≤ v1

The optimal bidding strategy—a b(·) that minimizes the maximum regret—can now be derived

by examining three cases separately.

2Proof available upon request.

8



First, consider the case v1 < c2. In this case, the regret is the larger of r1λ(d2 − b1) and

|v1 − b1|. For b1 ≤ v1, both of these expressions decrease with an increase in b1, so the optimal b1

is at least v1 and is given by the point of intersection of r1λ(d2 − b1) and b1 − v1, which results in

b1 =
v1

1 + λr1
+

λr1d2

1 + λr1
.

Next, consider the case v1 > d2. In this case, the regret is the larger of r2(1− λ)(b1 − c2) and

|v1 − b1|. For b1 ≥ v1, both of these expressions increase with an increase in b1, so the optimal

b1 is at most v1 and is given by the point of intersection of r2(1 − λ)(b1 − c2) and v1 − b1, which

results in

b1 =
v1

1 + (1 − λ)r2
+

r2(1 − λ)c2

1 + (1 − λ)r2
.

Analogous reasoning for player 2 yields the following strategy when v2 < c1,

b2 = =
v1

1 + λr2
+

λr2d1

1 + λr2
,

and for v2 > d1

b2 =
v2

1 + (1 − λ)r1
+

r1(1 − λ)c1

1 + (1 − λ)r1
.

These four cases already fix the values of c1, c2 and d1, d2. If agent 1 observes a value of v1 ≤ c2.

she bids at least her valuation, so c1 ≥ 0; similarly, if she observes v1 ≥ d2, she bids at most her

valuation, so d1 ≤ 1. A similar argument establishes that c2 ≥ 0 and d2 ≤ 1. Furthermore, as

the bidding range is assumed to be contained in [c1, d1] and [c2, d2], we may assume that agent 1

with a value of 0 bids exactly c1 and agent 2 exactly c2, and that agent 1 with a value of 1 bids

exactly d1 and agent 2 exactly d2. These observations lead to the equations

c1 =
λr1d2

1 + λr1
d1 =

1 + (1 − λ)r2c2

1 + (1 − λ)r2
,

c2 =
λr2d1

1 + λr2
d2 =

1 + (1 − λ)r1c1

1 + (1 − λ)r1
,

which, when solved, yield

c1 =
λr1

1 + r1
d1 =

1 + λr2

1 + r2

c2 =
λr2

1 + r2
d2 =

1 + λr1

1 + r1
.

We now focus on agent 1 and turn to the case in which v1 ∈ [c2, d2]. We consider two subcases,

depending on whether or not b1 ≤ v1. In each of these cases, the optimal strategy is determined

by either the intersection of r1λ(d2 − b1) and r2(1 − λ)(b1 − c2), or by the intersection of one of

9



these two terms with v1 − b1. The first two intersect at (r1λd2 + r2(1 − λ)c2)/(λr1 + (1 − λ)r2),

which becomes (λr1
1+λr1

1+r1
+ (1− λ)r2

λr2

1+r2
)/(λr1 + (1− λ)r2) when we substitute for the values of

c2 and d2. (The other intersections have already been calculated in our analysis of the first two

cases.) Specifically, for b1 ≤ v1, the optimal strategy is

b(v) =











λr1
1+λr1
1+r1

+(1−λ)r2
λr2
1+r2

λr1+(1−λ)r2
, 0 ≤ v1 ≤ u1

v1

1+(1−λ)r2
+

(1−λ)r2
λr2
1+r2

1+(1−λ)r2
, u1 ≤ v1 ≤ 1

where u1 is defined as the point of intersection of the two functions, i.e.,

λr1
1+λr1

1+r1
+ (1 − λ)r2

λr2

1+r2

λr1 + (1 − λ)r2
=

u1

1 + (1 − λ)r2
+

(1 − λ)r2
λr2

1+r2

1 + (1 − λ)r2

⇒ u1 = (1 + (1 − λ)r2)(
λr1

1+λr1

1+r1
+ (1 − λ)r2

λr2

1+r2

λr1 + (1 − λ)r2
−

(1 − λ)r2
λr2

1+r2

1 + (1 − λ)r2
).

Following the same reasoning, for b1 ≥ v1, the optimal strategy is

b1(v1) =







v1

1+λr1
+ λr1

1+r1
, 0 ≤ l1 ≤ v1

λr1
1+λr1
1+r1

+(1−λ)r2
λr2
1+r2

λr1+(1−λ)r2
, l1 ≤ v1 ≤ 1

where l1 is defined as the point of intersection of the two functions, i.e.,

l1
1 + λr1

+
λr1

1 + r1
=

λr1
1+λr1

1+r1
+ (1 − λ)r2

λr2

1+r2

λr1 + (1 − λ)r2

⇒ l1 = (1 + λr1)(
λr1

1+λr1

1+r1
+ (1 − λ)r2

λr2

1+r2

λr1 + (1 − λ)r2
−

λr1

1 + r1
).

Simple algebra verifies that 0 ≤ l1 ≤ u1 ≤ 1 for all λ, r1, r2. Putting these cases together, we find

that the optimal bidding strategy in this case is:

b(v1) =



















v1

1+λr1
+ λr1

1+r1
v1 ≤ l1

λr1
1+λr1
1+r1

+(1−λ)r2
λr2
1+r2

λr1+(1−λ)r2
l1 ≤ v1 ≤ u1

v1

1+(1−λ)r2
+

(1−λ)r2
λr2
1+r2

1+(1−λ)r2
u1 ≤ v1 ≤ 1

An equivalent expression holds for agent 2.

We now briefly comment on the efficiency properties of linear mechanisms.

Proposition 3 When r1 = r2 = 1/2, the only ex-post efficient linear mechanisms are the ones

corresponding to λ = 0 and λ = 1. When r1 6= r2, there is no ex-post efficient linear mechanism.
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Proof. When r1 = r2 = 1/2, the only mechanisms for which li = ui are the ones corresponding

to λ = 0, 1. Therefore, they are the only mechanisms that induce a strictly increasing bidding

function, which is identical for both agents.

Conversely, when r1 6= r2, no linear mechanism can ever be ex-post efficient. The argument

is simple. Let us first assume that λ > 0. This immediately implies that l1, l2 > 0. Now pick

v1 = v2 = v ≤ min{l1, l2}. By efficiency and continuity we must have

v1 = v2 ⇒ b1(v1) = b2(v2).

Recalling that v1 = v2 = v, λ > 0, and r2 = 1 − r1, we may write:

v

1 + λr1
+

λr1

1 + r1
=

v

1 + λ(1 − r1)
+

λ(1 − r1)

1 + (1 − r1)
⇒ r1 =

1

2
.

Thus, for λ > 0, the only ownership profile which can admit an efficient mechanism is r1 = r2 =

1/2.

Now let us examine the case where λ = 0. Here we have u1 = u2 = 0. Now assume we have

v1 = v2 ≥ 0 = u1. Applying the same argument as before and substituting λ = 0, we obtain:

v

1 + (1 − r1)
=

v

1 + r1
⇒ r1 =

1

2
.

So once again, the only profile which can admit an efficient solution is r1 = r2 = 1/2.

Comparing Linear Mechanisms in the Symmetric Case. A special case of the above

model is when r1 = r2 = 1/2. Given a linear mechanism λ, we obtain the following regret-

optimizing strategy:

b(v) =















2
2+λ

v + λ
3 0 ≤ v ≤ λ(2+λ)

3

λ λ(2+λ)
3 ≤ v ≤ (4−λ)λ

3
2

3−λ
v + λ(1−λ)

3(3−λ)
(4−λ)λ

3 ≤ v ≤ 1

(1)

A natural question to ask is if, among all linear mechanisms, there exists one that fares the

best in terms of efficiency. We say that a mechanism λ1 dominates λ2 if its interim regret is

weakly lower for every v ∈ [0, 1], and strictly lower for some v ∈ [0, 1]. Conversely, we say that

mechanism λ2 is dominated by λ1. The following proposition shows that there is no meaningful

way to rank mechanisms.

Proposition 4 Fix two linear mechanisms λ1 and λ2, where λi ∈ [0, 1]. There is no dominance

relation between the two mechanisms.

11



Proof. It is easy to see that for λ ∈ [0, 1], min max regret is given by the following expression:

R(λ, v) =















λ
3 − λ

2+λ
v 0 ≤ v ≤ λ(2+λ)

3
(1−λ)λ

3
λ(2+λ)

3 ≤ v ≤ (4−λ)λ
3

1−λ
3−λ

v − λ(1−λ)
3(3−λ)

(4−λ)λ
3 ≤ v ≤ 1

From the above it follows that there is no mechanism that simultaneously minimizes maximum

regret for every v ∈ [0, 1]. The argument goes as follows. Fix two mechanisms λ1 and λ2. Initially

assume 0 < λ2 < λ1 < 1. Then for v ∈ [0, λ2(2 + λ2)/3], the mechanism λ1 has a higher regret

than λ2. Conversely, for v ∈ [λ1(4 − λ1)/3, 1], the mechanism λ2 has higher regret than λ1.

Now assume that 0 < λ1 < 1 and that λ2 = 0, whose regret is given by 1/3v. Then for v

small enough we have v/3 < λ1/3 − λ1/(2 + λ1)v, whereas for v large enough, we have v/3 >

(1 − λ1)/(3 − λ1)v − λ1(1 − λ1)/3/(3 − λ1). So again there is no dominance relation.

Finally we take 0 < λ1 < 1 and λ2 = 1, whose regret is given by 1/3 − 1/3v. For v large

enough we have 1/3 − 1/3v < (1 − λ1)(3 − λ1)v − λ1(1 − λ1)/3/(3 − λ1), whereas for v small

enough we have 1/3 − 1/3v > λ1/3 − λ1/(2 + λ1)v. Again, there is no dominance relation.3

Finally, it is not difficult to show that the mechanism λ = 1/2 minimizes the worst-case regret

ex-ante. This is because we can easily see that:

max
v∈[0,1]

R(λ, v) = max

{

λ

3
,
(1 − λ)

3

}

,

which is minimized at λ = 1/2. By comparison, the mechanisms λ = 0 and λ = 1 fare the worst

under this measure.

The above facts are graphically depicted in Figure 1. The figure shows that while λ = 1/2 is

overall optimal (i.e., achieves the lowest maximum regret over all possible v’s). Other λ’s may be

better for v’s outside a “middle” range between 5/12 and 7/12. To minimize maximum regret,

therefore, agents with middling valuations are well-advised to choose a split-the-difference price

mechanism.

Linear Mechanisms under Bayesian-Nash We close this section by briefly commenting on

linear mechanisms in the traditional Bayesian-Nash profit-maximizing framework. We note the

following theorem due to Cramton et al. [5].

3Note that the mechanisms λ = 0, 1 do not dominate each other either.
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Figure 1: Regret of Linear Mechanisms with Different λ’s

Theorem 2 Suppose there are two agents with equal shares, and suppose their valuations are

drawn from a distribution F (·) in [0, 1] that is common knowledge. Then the bidding strategy

h(v) = v −

∫ v

F−1(λ)(F (x) − λ)2dx

(F (v) − λ)2

is a Nash equilibrium.

In fact, Cramton et al. prove a more general version of this theorem, allowing for an arbitrary

number of agents.

It is not difficult to show that when players use the equilibrium strategy given by Theorem 2,

their regret will be given by

R(λ, v) =
1

2
max

{

h(1) − h(v), h(v) − h(0)
}

which is never less and sometimes more than that given by the regret-minimizing strategy (Equa-

tion 1) for all v’s and λ’s. Presumably, risk-averse players would prefer the latter strategy over

the Bayesian-Nash equilibrium strategy.

13



4 Binary Search Mechanism

We now turn to a different mechanism that resembles the familiar binary search. This mecha-

nism is attractive, because it satisfies many of the desirable properties outlined earlier. Its main

disadvantage, however, is that it applies only under rather restrictive conditions.

Consider the equal-entitlement profile r1 = r2 = 1/2. Suppose that the agents bid b1 and

b2, and it is common knowledge that their valuations are in [0, 1]. The binary search mechanism

proceeds as follows: If b1 and b2 are on opposite sides of 1/2, then the procedure terminates, and

the good goes to the high bidder with the price set to 1/2. If b1 and b2 are both equal to or less

than 1/2, the procedure is applied to the interval of interest, [0, 1/2]. We now check if b1 and

b2 are on opposite sides of 1/4, in which case the price of the good is set to 1/4; otherwise, the

interval of interest is halved yet again, and the procedure is repeated recursively. Similarly, if b1

and b2 are both greater than 1/2, the procedure is applied to the interval [1/2, 1]. This continues

until the two agents are on different sides of the relevant candidate price.4

For example, if b1 = 1/8 and b2 = 3/7, the procedure terminates after two steps at which

point the good is sold to agent 2 at a price of 1/4. In theory, this process can take an unbounded

number of iterations to terminate. Clearly, the mechanism is anonymous, and price is always

between the minimum and maximum bids.

We show that this simple mechanism has some attractive properties. First, we prove that

when entitlements are equal, it induces a truthful regret-optimizing equilibrium. Second, in the

case of two-agents with identical shares and i.i.d. uniform [0,1] valuations, we show that truthful

bidding is a Nash equilibrium.

4.1 Binary Search and Regret

We start with the following result:

Theorem 3 Fix r1 = r2 = 1/2. The binary search mechanism induces a truthful regret-optimizing

equilibrium. It is therefore ex-post individually rational.

4If an agent’s bid is equal to the candidate price, then the mechanism treats the bid as if it were greater than

the price. For instance, p(b1, 1/2) = 1/2 if b1 < 1/2.
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Proof. The worst-case regret is written as:

R(b) = max



























1/2max(b̂ − p(b, b̂)), b̂ ≥ max{v, b}

1/2max(p(b, b̂) − b̂), b̂ ≤ min{v, b}

b − v, b > v

v − b, b ≤ v

Assume that one agent bids truthfully, i.e., b(v) = v. Then truthful bidding by the other player

will result in a worst-case regret of 1/4. The reasoning is as follows. First, truthfulness implies

that the expressions on the third and fourth lines of the right-hand side of R(b) are zero. Now

assume that a player observes v < 1/2 and bids b(v) = v < 1/2. The worst regret is realized when

her opponent has a valuation of 1 and bids b̂ = 1, leading to 1/2max(b̂−p(b, b̂)) that gives a regret

of 1/2(1 − p(1, b(v))) = 1/2(1 − 1/2) = 1/4. Similarly, when b(v) = v ≥ 1/2, the worst regret is

realized when her opponent has a valuation of 0 and bids b̂ = 0, leading to 1/2max(p(b, b̂)− b̂) that

gives regret of 1/2(1/2 − 0) = 1/4. Thus, we have established that truthfulness yields maximum

regret of 1/4.

Now assume that a player deviates and bids b(v) 6= v. If |b(v)−v| > 1/4, then she does strictly

worse than if she were truthful. If |b(v) − v| ≤ 1/4, then the expressions on the first and second

lines of the right-hand side of R(b) will again have a maximum regret of 1/4, because the other

agent will be truthful and will bid up in the whole interval [0, 1]. In fact, any strategy of the sort

|b(v) − v| ≤ 1/4 will be a best response to truthful bidding.

Efficient Equilibrium. While truthful bidding is an equilibrium, it is an efficient one. Suppose

that an agent does not bid truthfully and rather bids in an interval [c, d], where 0 ≤ c ≤ 1/2 ≤

d ≤ 1 and c = 1 − d. Then the function to be minimized is the following:

R(b) = max



























1
2(d − 1/2), v ≤ d, b ≤ 1/2
1
2(1/2 − c), v ≥ c, b ≥ 1/2

b − v, b > v

v − b, b ≤ v

A similar analysis to that in the previous section shows that c = 1/6 and d = 5/6, from which

we obtain the symmetric equilibrium strategy b(v) = 2/3v + 1/6, yielding a worst-case regret of

1/6. This equilibrium is clearly better than the truthful one. But the gain in efficiency comes at

a price: The strategies are no longer ex-post individually rational.

Our next result shows that the truthfulness of the binary search mechanism depends critically

on the equal-entitlement profile.
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Proposition 5 The binary search mechanism cannot be truthful for any unequal-entitlement pro-

file.

Proof. Without loss of generality, assume that r1 > r2. The worst-case regret for player 1 is

R1(b1) = max



























r1 max(b̂ − p(b1, b̂)), b̂ ≥ max{v1, b1}

r2 max(p(b1, b̂) − b̂), b̂ ≤ min{v1, b1}

b1 − v1, b1 > v1

v1 − b1, b1 ≤ v1

Assume that agent 2 bids truthfully, i.e., b2(v2) = v2. Then truthful bidding by agent 1 will

result in a worst-case regret that is given by the following function:

R1(b1) = max

{

max{ r1

2 , r2p(v1, 0)} = r1

2 , v1 < 1
2

max{r1(1 − p(v1, 1)),
r2

2 }, v1 ≥ 1
2

Now assume that agent 1, instead of being truthful, bids according to the strategy:

b1(v1) = max

{

v1 +
r2

2
, 1

}

.

Then it is easy to see that the maximum regret associated with this strategy is

R̃1(b1) = max















r1

2 , v1 < 1
2 − r2

2

max{r1(1 − p(v1 + r2

2 , 1)), r2

2 },
1
2 − r2

2 ≤ v1 ≤ 1 − r2

2
r2

2 , v1 ≥ 1 − r2

2

It is immediate that

R̃1(b1(v1)) ≤ R1(v1) ∀v ∈ [0, 1].

If r1 < 1, then we also have that R̃1(b1(v1)) < R1(v1) for at least one v1 ∈ [0, 1], so the dominance

is strict. If r1 = 1, then the maximum regret of a policy b1 is given by

R̃1(b1) = max















1
2 , b1 < 1

2

1 − p(b1, 1), b1 ≥ 1
2

|b1 − v1|

In this case, it is easy to see that a truthful bidding strategy is dominated by a host of others, for

example by b1 such that

b1(v1) = max















v1 + 1
4 , v1 ≤ 1

4
1
2 , 1

4 < v1 ≤ 1
2

v1,
1
2 < v1 ≤ 1
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4.2 Uniform Distributions and Nash Equilibria

In this section we first focus on two agents with uniform [0,1] valuations and equal entitlements.

We prove that bidding one’s valuation is a Nash equilibrium. We show that this result is not true

in either the case of general distributions or unequal entitlements.

Theorem 4 Fix r1 = r2 = 1/2, and let the agents’ valuations be iid uniform [0,1] random

variables. The binary search mechanism induces a truthful Nash equilibrium. It is therefore ex-

post individually rational.

Proof. Suppose that agents do not submit sealed bids but rather are allowed simultaneously to

declare if they are above or below the candidate price. That is, in round 1 they declare if they

are above or below 1/2. If there is a second round, they declare if they are above or below 1/4 or

3/4, and so on. In this dynamic game, we will show that truthfulness is a subgame-perfect Nash

equilibrium.

Suppose that agent 2 bids truthfully and that agent 1’s valuation is v1 = 1/2−ε, where ε ≥ 0.5

Since agent 2 is truthful, her bid will be uniformly distributed in [0,1].

Assuming agent 1 is truthful, let her payoff, should the game end in the k
′th round, be indexed

by π1(k). Denoting the candidate price at stage k by p(k), we may write

π1(k) =
1

2

∣

∣

∣

∣

v1 − p(k)

∣

∣

∣

∣

Clearly, if the game ends in period 1, then π1(1) = ε/2. If k > 1, then π1(k) is bounded from

below by the quantity 1
2

[

1
2k − ε

]

. We can establish this with the following simple argument:

π1(k) =
1

2

∣

∣

∣

∣

v1 − p(k)

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1

2
− ε − p(k)

∣

∣

∣

∣

≥
1

2

(

1

2
− ε − p(k)

)

≥
1

2

(

1

2k
− ε

)

.

Since player 2 is truthful, the probability that the game ends at stage k is simply the probability

that the agent’s valuation lies in the relevant interval of length 1/2k. It is thus equal to 1/2k. So,

player 1’s expected payoff π1 will satisfy:

π1 =
1

2

∞
∑

i=1

1

2k
π1(k) ≥

1

2

[

ε

2
+

∞
∑

k=2

1

2k

( 1

2k
− ε

)

]

=
1

24

with equality if and only if ε = 0.

Now let us return to agent 1’s actual strategy. Without loss of generality, assume that she is

untruthful in the first round, so she declares a valuation that is greater than 1/2. After her initial

5An analogous argument works for ε ≤ 0.
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misrepresentation, suppose that she is truthful up to time k1 − 1, where k1 ≥ 2. Should the game

end in round k, where 2 ≤ k ≤ k1 − 1, her payoff will be π̃1(k) = 1/2k + ε. Now suppose that

at time k1 she is again untruthful. Then should the game end at that time, her payoff will be

π̃1(k1) = −1/2k1 − ε. If the game does not end then, assume that she is again truthful from time

k1 + 1 until k2 − 1. In all those rounds her payoff will be 1/2k + 1/2k1 + ε. At time k2 it will be

−1/2k2 − 1/2k1 − ε. We can repeat this reasoning for all subsequent successive time periods in

which agent 1 is untruthful.

It is evident that for any strategy that player 1 adopts, all relevant information is captured

by these successive intervals of truthful and untruthful behavior. Writing the expected profit we

obtain

π̃1 =

∞
∑

k=1

1

2k
π̃1(k) =

1

2

[

−
ε

2
+

k1−1
∑

k=2

1

2k

( 1

2k
+ ε

)

−
1

2k1

( 1

2k1
+ ε

)

+

+

k2−1
∑

k=k1+1

1

2k

( 1

2k
+

1

2k1
+ ε

)

−
1

2k2

( 1

2k2
+

1

2k1
+ ε

)

+ ...

]

.

Focus on the terms {ε, 1/2k1 , 1/2k2 , ...}. These terms are subtracted from the agent’s payoff should

the game end in rounds {{1, k1, k2, ...}, {k1, k2, ..}, {k2, ...}, ...}, respectively. Furthermore, these

losses will never be fully recovered by truthful behavior in previous and later rounds. For example,

focusing on ε we have

−
ε

2
+

k1−1
∑

k=2

( ε

2k

)

−
ε

2k1
+

k2−1
∑

k=k1+1

( ε

2k

)

−
ε

2k2
+ ... ≤ 0,

with equality if and only if k1 = ∞. Applying this logic to all terms 1/2k such that k corresponds

to a round in which agent 1 is untruthful, we may write:

π̃1 ≤
1

2

[

ε

2
+

∞
∑

k=2

1

2k

( 1

2k
− ε

)

]

.

Thus we can conclude that

π̃1 ≤ π1

with equality if and only if ε = 0 and k1 = ∞. In fact, we also have

π̃1 ≤ π̂1

where π̂1 is the agent’s payoff when she is untruthful only in round 1 and is truthful thereafter.

This observation establishes that the equilibrium is subgame-perfect.
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The following proposition shows that we cannot hope to achieve truthfulness of the binary-

search mechanism when entitlements are unequal.

Proposition 6 Fix r1 6= r2, and let the agents’ valuations be iid uniform [0,1] random variables.

The binary search mechanism is not truthful.

Proof. Without loss of generality, assume r1 < r2. Now suppose that agent 2 is truthful and

agent 1 observes a valuation of v1 = 1/2. Recalling that the binary search mechanism treats a bid

of 1/2 as if it were greater than 1/2, agent 1’s expected profit under a truthful bidding strategy

will be

π1 =
1

2
0 +

1

4

(

r1
1

4

)

+
1

8
(r1

1

8
) + ... =

r1

12
.

Now suppose agent 1 deviates and instead bids just slightly below 1/2. Her expected profit will

be arbitrarily close to

π̃1 =
1

2
0 +

1

4

(

r2
1

4

)

+
1

8

(

r2
1

8

)

+ .... =
r2

12
.

Since r2 > r1, we have π̃1 > π1. Thus, the mechanism cannot be truthful.

General Distributions. The binary search mechanism as described is designed specifically with

the uniform distribution in mind. For general distributions, the most obvious way to extend it

would be to fix prices in terms of the distribution quantiles. Thus, if the two bids are on opposite

sides of the 50-percent quantile, then the price is set to that quantile. The process iterates on

either the 25-percent or 75-percent quantile, and so on.

When valuations are generally distributed, it is easy to construct examples in which truthful

reporting is not a Nash equilibrium. Let α1, α2, α3 be the 50, 25, and 75-percent quantiles,

respectively. Assume that r1 = r2, agent 2 is truthful, and v1 < α1. A truthful response will yield

the payoff

π1 =
1

2

[

1

2
(α1 − v1) +

1

4

∣

∣α2 − v1

∣

∣ + ...

]

.

Now assume that, instead, agent 1 bids exactly α1. This will yield the payoff

π̃1 =
1

2

[

1

2
(v1 − α1) +

1

4
(α3 − v1) + ...

]

.

Now we can see that if v1 is close enough to α1 and α2, and if α3 is far enough from α1, then

1

2
(α1 − v1) +

1

4
|α2 − v1| <

1

2
(v1 − α1) +

1

4
(α3 − v1).

We observe that if the distribution’s right tail is sufficiently heavy, bidding α1 dominates bidding

v1.
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We end this section by noting that although the binary-search mechanism satisfies certain

desirable properties, it is applicable only under restrictive conditions. By contrast, the class

of linear mechanisms can be used in more general situations, but it it not ex-post individually

rational for the special cases that we have examined.

5 General Mechanisms

We now consider the general mechanism-design version of the problem. Specifically, we ask if it

is possible to design any mechanism satisfying all the desirable properties outlined earlier.

5.1 Ex-post Efficiency and Regret

As we saw in sections 3 and 4, when entitlement profiles are equal and agents wish to minimize

maximum regret, both linear mechanisms (with λ ∈ {0, 1}) and the binary-search mechanism are

ex-post efficient. At the same time, both fail to achieve ex-post efficiency when entitlements are

unequal. The following proposition establishes that a large class of mechanisms cannot hope to

ever achieve ex-post efficiency.

Theorem 5 Suppose that the agents’ objective is to minimize maximum regret. Consider the

class of mechanisms p such that ∂p
b1

, ∂p
b2

> 0 for all b1, b2. Any such mechanism cannot be ex-post

efficient for unequal-entitlement profiles.

Proof. Consider two agents with r1 6= r2, and fix a mechanism p. Once again we write the

worst-case regret for agent 1:

R1(b1) = max



























r2 max{p(b1, b̂) − b̂}, b̂ ≤ min{b1, v1}

r1 max{b̂ − p(b1, b̂)}, b̂ ≥ max{b1, v1}

b1 − v1, b1 > v1

v1 − b1, b1 ≤ v1

Let b1, b2 be the regret-optimizing strategies for players 1 and 2, respectively, and denote b1(0) =

c1, b1(1) = d1 and b2(0) = c2, b2(1) = d2.

Ex-post efficiency along with the continuity of b1, b2 dictates that both players will have the

same bidding strategy, i.e., b1(v) = b2(v) for all v ∈ [0, 1]. Our argument proceeds in two steps.

First, ex-post efficiency implies that the agent with the higher valuation will have to outbid her

opponent, i.e.,

v1 ≤ v2 ⇔ b1(v1) ≤ b2(v2), ∀(v1, v2)
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Now if we assume that the bidding functions are continuous and we let v1, v2 → v, the previous

inequality becomes an equality:

b1(v) = b2(v), ∀v

Applying this condition to v = 0 and v = 1, we obtain c1 = b1(0) = b2(0) = c2 = c and

d1 = b1(1) = b2(1) = d2 = d.

Assume that agent 1 has a valuation of v1 = 0. Then we know that she must bid b(0) = c.

For c to be the optimal bid, it must be at the intersection of b1 − v1 and r1 max
b̂≥c

{b̂ − p(c, b̂)}.

Since ∂p
b1

> 0, c will be the unique minimizer, as maxb≥ĉ{b̂ − p(ĉ, b̂)} > maxb≥c{b̂ − p(c, b̂)} for all

ĉ < c. Substituting b1 = c and v1 = 0, c will have to satisfy

c = r1 max
b̂≥c

{b̂ − p(c, b̂)}.

Recalling that agent 2 will also have to bid c upon seeing a valuation of v2 = 0, an equivalent

argument establishes that c will also need to satisfy

c = r2 max
b̂≥c

{b̂ − p(b̂, c)}.

Thus we obtain

r1 max
b̂≥c

{b̂ − p(c, b̂)} = r2 max
b̂≥c

{b̂ − p(b̂, c)}.

Anonymity implies that p(c, b̂) = p(b̂, c). Therefore, unless max
b̂>c

{b̂ − p(c, b̂)} = 0, the above

implies that r1 = r2, a contradiction. So we must have

max
b̂≥c

{b̂ − p(c, b̂)} = 0 ⇒ p(c, d) = d.

Applying the same reasoning to v = 1, we obtain

max
b̂≤d

{p(d, b̂) − b̂} = 0 ⇒ p(d, c) = c.

As ex-post efficiency implies that c < d, we have reached a contradiction.

This proposition establishes that a large class of mechanisms can never hope to achieve ex-post

efficiency. For instance, many anonymous mechanisms of the form p(b1, b2) = f(b1, b2)b1 + (1 −

f(b1, b2))b2, where f is continuously differentiable and 0 < f(b1, b2) < 1 for all b1, b2, would fail

to be ex-post efficient. This class obviously includes linear mechanisms for which 0 < λ < 1.
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5.2 Ex-post Individual Rationality and Bayesian-Nash Equilibria

In this section we analyze the implications of requiring ex-post individual rationality in the tra-

ditional Bayesian-Nash profit-maximizing setting. As we saw in Section 4, the binary-search

mechanism is ex-post individually rational, but only in the case of equal entitlements and uni-

form [0,1] utilities. If entitlements are unequal, we prove that the only mechanisms that could

satisfy this property are ones in which, like the binary-search mechanism, the price is a kind of

step-function of the bids.

Theorem 6 Suppose the agents’ objective is to maximize expected profit and that r1 6= r2. Then

if a mechanism p(b1, b2) is ex-post individually rational, it must satisfy:

∂p

∂b1
=

∂p

∂b2
= 0 almost everywhere.

Proof. Fix a mechanism p. Assume that agent 1 and 2’s utilities are i.i.d. with a cdf F . Suppose

agent 2 bids according to h2(v2), and let G1(v1, b1) denote agent 1’s expected profit given a

valuation of v1 and a bid of b1. We may write

G1(v1, b1) =

∫ h−1
2

(b1)

0
r2(v1 − p(b1, h2(v2))f(v2)dv2

+

∫ 1

h−1

2
(b1)

r1(p(b1, h2(v2)) − v1)f(v2)dv2.

Differentiating the above with respect to b1 and setting the derivative equal to 0 we obtain

∫ h−1

2
(b1)

0
−r2(

∂

∂b1
p(b1, h2(v2))f(v2)dv2 + r2(v1 − b1)

d[h−1
2 (b1)]

db1
f(h−1

2 (b1)) +

∫ 1

h−1

2
(b1)

r1
∂

∂b1
p(b1, h2(v2))f(v2)dv2 − r1(b1 − v1)

d[h−1
2 (b1)]

db1
f(h−1

2 (b1)) = 0.

Therefore in order for h1(v1) = v1 and h2(v2) = v2 to be an equilibrium, the following first-order

conditions need to be satisfied:
∫ v1

0
−r2

∂

∂b1
p(v1, v2)f(v2)dv2 +

∫ 1

v1

r1
∂

∂b1
p(v1, v2)f(v2)dv2 = 0, ∀v1

∫ v2

0
−r1

∂

∂b2
p(v1, v2)f(v1)dv1 +

∫ 1

v2

r2
∂

∂b2
p(v1, v2)f(v1)dv2 = 0, ∀v2.

Now let v1 = v2 = v. By anonymity we have that ∂
∂b1

p(v1, v2) = ∂
∂b2

p(v2, v1). Adding the two

previous equalities gives us
∫ v

0

∂

∂b1
p(v, u)f(u)du =

∫ 1

v

∂

∂b2
p(u, v)f(u)du, ∀v.
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On the other hand, subtracting the same equalities, and assuming r1 6= r2, we obtain
∫ v

0

∂

∂b1
p(v, u)f(u)du = −

∫ 1

v

∂

∂b2
p(u, v)f(u)du, ∀v.

Combining the two equalities, we obtain
∫ v

0

∂

∂b1
p(v, u)f(u)du =

∫ 1

v

∂

∂b2
p(u, v)f(u)du = 0, ∀v.

Since f(v) > 0 and ∂p
b1

, ∂p
b2

≥ 0, we conclude that

∂p

∂b1
=

∂p

∂b2
= 0 almost everywhere.

6 Conclusion

Standard buy-sell agreements are flawed by forcing the proposer to maker herself indifferent to

buying out, or being bought out, by the responder, who will generally not be indifferent and can

choose her preferred option [9]. By contrast, we proposed a class of symmetric mechanisms that,

by treating each partner equally, is fair to both.

We studied partnership dissolution models under the novel assumption that agents act as

maximum-regret minimizers. We analyzed linear and binary search mechanisms and derived

expressions for the regret-optimizing equilibrium strategies that they induce. Restricting ourselves

to equal-entitlement profiles, we showed that linear mechanisms can achieve ex-post efficiency;

the binary search mechanism satisfies the even stronger property of ex-post individual rationality.

Switching to a Bayesian-Nash framework, linear mechanisms remain ex-post efficient. The

binary-search mechanism is ex-post individually rational for the case of uniformly distributed

utilities, but this is not the case for generally distributed utilities. When entitlements are unequal,

linear mechanisms, as well as the binary-search procedure, do not satisfy these desirable properties.

In fact, when entitlements are unequal and agents seek to minimize regret, there is no mecha-

nism with a strictly increasing price function that is ex-post efficient. Likewise, when agents wish

to maximize profit in such an asymmetric environment, the only mechanisms that can satisfy

ex-post individual rationality are ones in which the price has a step-function structure, akin to

the binary search mechanism.

The failure of several mechanisms to satisfy certain desirable properties is counterbalanced by

the positive results we found in one important case—when the two partners have equal entitle-

ments (i.e., 50 percent each). Under specified conditions, there is an ex-post efficient mechanism

23



linear mechanism, and the binary mechanism is truth-inducing and, therefore, ex-post individu-

ally rational. These mechanisms deserve to be experimented with, if not actually used, in this

important setting.
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